skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bilgili, Emir"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This work introduces a theoretical formulation and develops numerical methods for finite element implementation of the formulation so as to extend the concurrent atomistic-continuum (CAC) method for modeling and simulation of finite-temperature materials processes. With significantly reduced degrees of freedom, the CAC simulations are shown to reproduce the results of atomically resolved molecular dynamics simulations for phonon density of states, velocity distributions, equilibrium temperature field of the underlying atomistic model, and also the density, type, and structure of dislocations formed during the kinetic processes of heteroepitaxy. This work also demonstrates the need of a mesoscale tool for simulations of heteroepitaxy, as well as the unique advantage of the CAC method in simulation of the defect formation processes during heteroepitaxy. 
    more » « less
    Free, publicly-accessible full text available November 4, 2025